Close Proximity Electromagnetic Carbonization (CPEC)

PI: Felix Paulauskas
Oak Ridge National Laboratory

Presenter: Truman Bonds RMX Technologies

June 8, 2017, 9:30am

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

Timeline

- Project Start: 10/1/17
- Project End: 9/30/18
- Progress: ~48%

Budget

- FY16 FY18: \$4.5M
- Funding received in FY16: \$1.5M
- Funding for FY17: \$1.35M

Barriers

- Barriers addressed
 - Cost: A goal of this project is to reduce energy consumption in the carbon fiber conversion process and therefore total carbon fiber cost.
 - Inadequate supply base: Another goal of this project is to reduce the require processing time for carbonization and therefore increase overall throughput.

Partners

- Project lead: ORNL
- Partner: RMX Technologies

Relevance

 Close Proximity Electromagnetic Carbonization (CPEC) is a new low temperature carbonization process that is faster and more efficient than the conventional process.

Project Goals

- Reduce unit energy consumption (kWh/kg) by 50%.
- Reduce Operational Costs by 25%.
- Produce the same or better quality carbon fiber.
- Scale the technology to a nameplate capacity of 1 annual metric ton and demonstrate by project end date.

FY16-17 Milestones

Date	Milestone	Status
December 31, 2015	M1: Completion of database of electrical properties of Partially Carbonized Fiber (PCF). Samples of PCF are created and characterized.	Complete
May 13, 2016	M2 : Completion of CPEC-2V model (a virtual computational experimental setup). Simulated performance shows a distribution of heating with a maximum variation of ± 2.5% across the width of the entire simulated tow band sample.	Complete
October 15, 2016	M3: Completion of CPEC-3 furnace construction. 100% of the CPEC-3 construction is complete. The furnace and required subsystems are in place and ready for initial testing.	Complete
December 15, 2016	Go/No Go M4: Demonstrate stable processing of material on a continuous basis with the CPEC-3.	Complete

FY16-17 Milestones

Date	Milestone	Status
January 31, 2017	M5: Successfully carbonize material on a continuous basis in the CPEC-3 with carbonized material achieving a minimum density of 1.5 g/cc.	Complete
June 30, 2017	M6: Successfully carbonize material on a continuous basis in the CPEC-3 with final carbonized material achieving a minimum density of 1.5 g/cc in under 90 seconds achieving minimum mechanical properties of 150 ksi tensile strength, 15 Msi Modulus.	On-Track
September 30, 2017	Go/No Go M7: Successfully carbonize material on a continuous basis in the CPEC-3 with final carbonized material achieving a minimum density of 1.5 g/cc in under 90 seconds achieving minimum mechanical properties of 250 ksi tensile strength, 25 Msi Modulus, and 1% strain.	On-Track

FY18 Milestones

Date	Milestone	Status
November 30, 2017	M8: Complete assembly of CPEC-4 and demonstrate stable/proper operation of all subcomponents for 20 minutes.	
March 31, 2018	M9: Successfully carbonize 4x24k tows with final mechanical properties of greater or equal to 250 ksi tensile strength and 25 Msi Modulus.	
June 30, 2018	M10: Successfully carbonize 4x24k tows with final mechanical properties of greater or equal to 250 ksi tensile strength and 25 Msi Modulus in under 60 seconds.	
September 30, 2018	Go/No Go M11: Demonstrate at least 5% cost savings using CPEC versus conventional carbonization.	

National Laboratory

Approach Background

Conventional PAN Processing

Major Manufacturing Costs

Precursor 43%
Oxidative stabilization 18%
Carbonization 13%
Graphitization 15%
Other 11%

Actual percentages vary and are precursor dependent

(Winders) Automotive cost target is \$5 - \$7/lb

- Tensile property requirements are 250 ksi, 25 Msi, 1% ultimate strain
- ORNL is developing major technological breakthroughs for major cost elements

Approach

- Conventional furnaces consume significant energy heating large volumes of inert gas surrounding the fiber.
- If thermal energy could be directly coupled from an energy source to the fiber, tremendous energy savings could be realized.
- This project uses electromagnetic coupling to directly heat the fiber – not the surrounding gas.
- Dielectric heating mechanism is utilized.

Approach

- Based on volumetric power loss due to dipolar electromagnetic heating
 - $-P_{v}$ power absorbed per unit volume, W/m³
 - $-\varepsilon'$ is the relative dielectric constant
 - ϵ_0 is permittivity of free space, 8.85418782 x 10⁻¹² F/m
 - -|E| is the magnitude of the local electric field intensity
 - $-tan\delta$ is the loss tangent of the material
 - − f is the operational frequency

$$P_{v} = 2\pi f |E|^{2} \varepsilon_{0} \varepsilon' tan \delta$$

Approach

Processing 1 x 48k tow in CPEC-3 Furnace

Frequency in Hz

[1] Mauritz, Kenneth A, Dielectric Spectroscopy, The University of Southern Mississippi.

Implementation Pathway

- Material Measurement
 - 163 different samples measured consisting of:
 - 10 different carbonization levels or temperatures
 - Multiple temp ramping functions during material characterization
 - Broad frequency range with at least 801 points in each sweep
 - Characterized on 3 different measurement systems
 - Custom Matlab and Visual Basic Data Reduction

LM122

Technical Accomplishments

Scholes Indianoles of Indian Continue of Indianoles Ind

Α	35	11	-100	250	4	1348
В	9	7	21	21	0	801
С	9	7	21	21	0	801
D	9	7	21	21	0	801
E	20	9	-100	250	2	801
F	1	1	21	21	0	801
G	1	1	21	21	0	801
Н	1	1	21	21	0	801
I	1	1	21	21	0	801
J	10	2	21	250	1	801
Polyethylene	13	2	21	21	0	801
Polytetrafluoroet hylene (Teflon)	4	2	21	21	2	801
Polyacrylonitrile	15	3	20	250	3	972
50 Ohm Calibration Standard	35	3	21	21	35	801
Totals	163	57	-	-	-	11932

Frequency Increasing \rightarrow

Computational Electromagnetic Modeling (CPEC-2V)

- Conservative modeling practices produced a design that, when built, carbonizes at lower than expected power levels.
- More than 20 design iterations were evaluated and the optimized embodiment was built.
- Without the need for insulation, wall temperature remains lower than 125°C after 30min of operation on existing furnace. (conventional furnace is 400 -600 C).

- Prototype Design and Build
 - Prior Work: CPEC-1 was the initial proof of concept device
 - CPEC-2V was functionally modeled
 - CPEC-3 Current operational furnace. Constructed based on CPEC-2V
- Images or details cannot be presented due to export control restrictions.
- CPEC-3 is a single-tow (48k) close proximity electromagnetic carbonization furnace. It has been in operation since November 2016.
- CPEC-3 can be operated in batch mode or continuous mode.

Continuous Processing of Fiber with CPEC-3 Furnace

Sample

Res. Time = 1min Conventional 90+ seconds

Density = 1.66g/cc

W. Loss ≈ 44%

Mechanical Properties of Partially Carbonized Fiber

Sample	Diameter [μm]	Peak stress [ksi]	Modulus [Mpsi]	Strain at peak stress [%]		
CPEC-3_0035	8.95	162.4	11.54	1.29		
Sample A	13.52	29.2	1.05	21.62		
Sample B	12.01	21	0.98	4.22		
Sample C	11.45	40.1	1.35	7.45		
Sample D	11	72.8	2.58	3.95		
Sample E	10.69	117.3	5.52	2.03		
Sample F	9.76	176.7	9.53	1.76		
Sample G	9.87	108.3	12.32	1.37		
Sample H	8.8	208.4	16.25	1.18		
Sample I	9.07	308.6	21.05	1.33		
Sample J	8.77	329.2	21.99	1.36		

Feedstock material

Electrical Characterization

Conventionally Carbonized Chart Data

Resistance, Ohm/ft

CPEC Sample 35 Electrical characterization:

Position (in)	1.6	3.1	4.7	6.3	7.9	9.4	11.0	12.6	14.2	15.7	17.3	18.9	20.5	22.0
Resistance per ft												V		
(Ω/ft)	76	232	171	1143	1295	229	152	183	259	457	381	655	1219	381

Average Resistance Per Ft

490 Ω/ft

Response to Previous Year Reviewer's Comments

This project was not reviewed last year in FY16.

Collaboration and Coordination with Other Institutions

- RMX Technologies is a sub to ORNL.
 - Provides electrical engineering expertise.
 - RMX Technologies has previously partnered with ORNL to successfully develop plasma oxidation technology that is now being commercialized.
 - This same ORNL/RMX partnership is involved with the current project.

Potential Future Commercialization Partners

(Same team that commercialized plasma oxidation)

- 4M Carbon Fiber Technologies is a company created by RMX to manufacture plasma systems. Will be involved in commercialization at conclusion of project.
- C.A. Litzler & Co., Inc. is RMX's oven manufacturing partner.
 Will be involved in commercialization at conclusion of project.

Remaining Challenges and Barriers

- Eliminate the damage experienced by the material due to arcing by implementing appropriate isolation.
- Control the consistency of the process.
- Select a design that would make the next furnace (CPEC-4):
 - Demonstrate scalability of the CPEC concept
 - Highly robust to large scale industrial processing

Proposed Future Research

Any proposed future work is subject to change based on funding levels.

FY17

 Demonstrate final carbon fiber properties using the CPEC-3 furnace.

FY18

- Design and build the CPEC-4 furnace, a 1 ton low temperature carbonization furnace.
- Operate CPEC-4 furnace and produce carbon fiber meeting or exceeding required mechanical properties.

Summary

- A CPEC furnace was successfully modeled and built based upon material characterization.
- CPEC-3 can produce fiber with properties exceeding those obtained from conventional Low Temperature Carbonization (LTC)
- CPEC-3 typical residence time is 50 seconds. This replaces conventional ramping sections, Low Temperature Carbonization (LTC), and partial High Temperature Carbonization (HTC).
- Projected full scale cost savings of CPEC based upon current capabilities is 48-51% of conventional carbonization.

Thank You

• Questions?

Technical Backup

- Initially this project was proposed as an iterative, completely experimental effort, based on prior feasibility work conducted.
- After project start, with initial discussion and analysis of early work, it was decided to change focus and look at a focused modeling effort.

